5 research outputs found

    Control Design and Implementation of Autonomous 2-DOF Wireless Visual Object Tracking System

    Get PDF
    Karena skala implementasi deteksi visual yang besar sebagai alat sensor dan navigasi, pelacakan target menggunakan manipulasi gambar untuk sistem robot otonom menjadi sebuah objek studi yang menarik bagi banyak peneliti. Hal ini pun memunculkan berbagai upaya untuk mengembangkan sistem yang dapat mendeteksi dan melacak target bergerak dengan menggunakan pemrosesan gambar atau video dalam kondisi real time. Meskipun begitu, pelacakan objek visual dapat menjadi subjek dari kesalahan karena manipulasi gambar. Kesalahan ini dapat menimbulkan ketidakpastian pada kontrol sistem yang dapat menyebabkan ketidakstabilan, terutama bagi operasi jarak jauh. Oleh karena itu, filter yang efektif yang dapat mengatasi atau mengurangi kesalahan ini sangatlah diperlukan dalam mengembangkan sistem pelacakan objek visual. Dalam karya ini, sebuah sistem pelacakan objek visual dalam 2 derajat kebebasan (2-DOF) dikembangkan dengan information filter atau filter informasi. Sistem ini terdiri dari sebuah unit pengambilan gambar, unit pengolahan gambar, komunikasi nirkabel, dan manipulator. Kemudian untuk mengamati efektivitas filter dalam kondisi real time dan jarak jauh, prestasi sistem pelacakan visual ini, baik dengan maupun tanpa filter tersebut, diuji berdasarkan simulasi video dan tes secara real time. Berdasarkan pengujian secara real time, filter informasi dapat mengurangi kesalahan pengukuran / deteksi sekitar 30% dibandingkan dengan deteksi tanpa menggunakan filter

    Control Design and Implementation of Autonomous 2-DOF Wireless Visual Object Tracking System

    Get PDF
    Due to large scale implementation of visual detection and tracking as a mean of sensor and navigation tool, target detection and tracking using image manipulation for autonomous robotic system becomes an interesting object of study for many researchers. In addition, there have been attempts to develop a system that can detect and track a moving target by using an image or video processing in a real time condition. Despite that, visual object tracking can be a subject of noise because of image manipulation. The noise can create uncertainty on state and observation model that can lead to control instability, especially that in remote operation. Therefore, an effective filter that can tackle or reduce this noise is needed in developing a visual object tracking system. In this work, a 2-degree of freedom (2-DOF) visual object tracking system was developed with an information filter. The system consists of an image capture unit, an image processing unit, a wireless communication unit, and a manipulator. Then to observe the filter effectiveness on real time visual object tracking in remote operation, performances of this visual object tracking system with and without the filter were tested based on video simulation and real time tracking. In the live streaming test, the information filter can reduce the error of the measurement about 30% than that without it

    Development of Tailless Flapping Wing System With 2.4 GHz Wireless Communication

    Get PDF
    Recently, there have been studies on characteristics of flapping motion of small birds and insects in flight where in that size category; flapping wing designs excel over their fixed wing counterparts. Despite that, complexities of wing motion and biomechanism of birds and insects added many difficulties to build an efficient flapping mechanism, especially that without tail configuration. In an attempt to overcome such difficulties, two motor-driven flapping wing system micro aerial vehicles (FW-MAV) were developed without tail configuration. First FW-MAV has one DC motor to drive its wing motion and optionally magnetic actuator for maneuverability. The second FW-MAV has two DC motors that can separately generate flapping wing motion. In addition, 2.4 GHz wireless communication was also implemented to both FW-MAV to remotely control the wing actuators. Then to evaluate their flight efficiency, flapping motion of the two FW-MAVs were evaluated based on kinematics simulation and flapping frequency test measurement. Further, thrusts produced by both FW-MAVs were also measured and compared. Based on the measurement, FW-MAV with two motors was about 4% heavier than the other FW-MAV, but it can generate about 10% larger flapping angle and about 3 times of thrust

    Development of Tailless Flapping Wing System With 2.4 GHz Wireless Communication

    Get PDF
    Sekarang ini, telah banyak studi tentang karakteristik terbang burung kecil dan serangga di mana di dalam kategori ukuran ini, desain flapping wing (kepakan sayap) unggul atas desain fixed-wing. Meskipun demikian, kompleksitas gerakan dan biomekanisme sayap burung dan serangga memperbanyak kesulitan dalam pembuatan sistem kepakan yang efisien, terutama yang tidak memiliki konfigurasi ekor. Dalam upaya untuk mengatasi kesulitan tersebut, dikembangkan dua sistem kepakan sayap (FW-MAV) tanpa konfigurasi ekor. FW-MAV yang pertama hanya memiliki satu motor untuk menggerakkan sayap dan dapat ditambahkan sebuah magnetic actuator untuk menambah kemampuan manuvernya. Sedangkan yang kedua memiliki dua motor yang secara terpisah dapat mengepakkan dua sayap. Sarana komunikasi nirkabel 2,4 GHz juga ditambahkan untuk mengontrol jarak jauh kedua sistem FW-MAV. Kemudian, tingkat efisiensi terbang kedua FW-MAV diukur berdasarkan simulasi kinematika dan frekuensi kepakan. Selanjutnya, gaya dorong yang dihasilkan oleh kedua FW-MAV juga diukur dan dibandingkan. Berdasarkan pengukuran tersebut, FW-MAV dengan dua motor memiliki berat 4% lebih besar dari model dengan satu motor, tetapi dapat menghasilkan sudut kepakan 10% lebih besar dan 3 kali lipat gaya dorong

    Design and Implementation of Respiration Rate Measurement System Using an Information Filter on an Embedded Device

    No full text
    In this work, an algorithm was developed to measure respiration rate for an embedded device that can be used by a field robot for relief operations. With this algorithm, the rate measurement was calculated based on direct influences of respiratory-induced intensity variation (RIIV) on blood flow in cardiovascular pathways. For this, a photoplethysmogram (PPG) sensor was used to determine changes in heartbeat frequencies. The PPG sensor readings were filtered using an Information Filter and a fast Fourier transform (FFT) to determine the state of RIIV. With a relatively light initialization, the information filter can estimate unknown variables based on a series of measurements containing noise and other inaccuracies. Therefore, this filter is suitable for application in an embedded device. For faster calculation time in the implementation, the FFT analysis was calculated only for a major peak in frequency domain. Test and measurement of respiration rate was conducted based on the device algorithm and spirometer. Heartbeat measurements were also evaluated by comparing the heartbeat data of the PPG sensor and pulse-oximeter. Based on the test, the implemented algorithm can measure the respiration rate with approximately 80% accuracy compared with the spirometer
    corecore